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Acute kidney injury and distant organ
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Acute kidney injury (AKI) occurs in about half of critically ill
patients and is associated with high in-hospital mortality,
increased long-term mortality postdischarge, and
subsequent progression to chronic kidney disease.
Numerous clinical studies have shown that AKI is often
complicated by dysfunction of distant organs, which is a
cause of the high mortality incidence associated with AKI.
Experimental studies have elucidated many mechanisms of
AKI-induced distant organ injury, which include
inflammatory cytokines, oxidative stress, and immune
responses. This review provides an update on evidence of
organ crosstalk and potential therapeutics for AKI-induced
organ injuries, and presents the new concept of a systemic
organ network that balances homeostasis and involves
multi-organ crosstalk beyond that of the kidney with a
single distant organ.
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A cute kidney injury (AKI) occurs in about half of
critically ill patients, with high in-hospital mortality
and morbidity.1–3 AKI survivors still have increased

risk of postdischarge mortality,4–8 progression of proteinuria,
and chronic kidney disease (CKD).9–13 Although the mecha-
nisms by which AKI leads to death, even when dialysis is
available, remain incompletely understood, distant organ
injury is considered an important cause, given that dysfunc-
tion of multiple organs is often observed in AKI patients,
and that the number of injured organs is correlated with mor-
tality.14,15 AKI patients requiring intensive care and kidney
replacement therapy still have a considerably higher mortality
rate than patients with CKD stage 5D,16 indicating that other
factors rather than kidney dysfunction contribute to poor
prognosis. These findings support the premise that AKI-
induced distant organ dysfunction plays an important role
in critically ill patients. To date, many studies have elucidated
the mechanism by which AKI induces injury and dysfunction
in distant organs, including the brain, heart, lung, liver, intes-
tine, and spleen. These mechanisms include inflammatory cy-
tokines, oxidative stress, and immune cell responses.

Previous reviews on this topic have heightened awareness
and stimulated research regarding this important prob-
lem17,18 More recently, mounting clinical and basic data in
this field have led to identification of novel mechanisms; the
current review provides an update on this work.
Kidney–lung interactions
Respiratory complications are common in AKI patients. In a
prospective observational study conducted in 18 French
intensive care units, AKI developed more frequently in pa-
tients with acute respiratory distress syndrome (44%),
compared with patients without this syndrome (27%).19 This
study also found that the combination of AKI with acute
respiratory distress syndrome was associated with high mor-
tality rates. These findings are consistent with a recent
multicenter observation study of the Large Observational
Study to Understand the Global Impact of Severe Acute
Respiratory Failure (LUNG SAFE) study, conducted in 459
intensive care units from 50 countries.20 This study showed
that patients with any AKI stage had a lower PaO2/FiO2 (P/F)
ratio, a clinical indicator of oxygenation, and higher positive
end-expiratory pressure, and that AKI was significantly
associated with longer duration of invasive mechanical
ventilation, longer hospitalization, and increased mortality.
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These 2 clinical studies highlight the association of AKI and
lung injury, although the injury in kidney and lung often
occurs simultaneously, and therefore the conclusion could not
be clearly drawn that AKI directly affects lung injury.

Respiratory dysfunction with AKI has been commonly
believed to be due mainly to fluid overload and cardiogenic
pulmonary edema.21 However, several studies have demon-
strated that additional mechanisms are involved in kidney–lung
interactions, including inflammatory mediators, infiltrations of
neutrophils and T cells, and enhanced microvascular perme-
ability.22–25 Experimental ischemic AKI in rats was shown to
increase lung microvascular permeability, pulmonary edema,
and microvascular leukocyte sludging with red blood cell
rouleaux formation.22 Lung injury also can be induced by
bilateral nephrectomy, which suggests that acute uremia can
cause lung injury.26,27 In addition, interleukin 6 (IL-6), a
cytokine increased in experimental and clinical AKI,28–30

contributed to lung injury induced by kidney ischemia reper-
fusion or bilateral nephrectomy.31 The induction of lung che-
mokine ligand 1 was involved in IL-6–related lung injury by
AKI, and blockade of chemokine ligand 1 and IL-6 attenuated
neutrophil infiltration and lung injury.32 However, IL-6 also
has an anti-inflammatory effect on the lung after AKI via IL-10
production from CD4 T cells.33,34

Signaling with Toll-like receptor (TLR) 4 and high
mobility group box 1 (HMGB1) plays an important role in
kidney–lung interactions. HMGB1, a damage-associated
molecular pattern molecule (DAMP) released from
apoptotic cells, interacts with TLR4 of target cells, leading to
activation of nuclear factor kappa B and inducing immune
responses.35,36 Bilateral nephrectomy induced neutrophil
infiltration to the lung, which was reduced in TLR4 mutant
mice (C3H/HeJ strain). HMGB1 was elevated after nephrec-
tomy, and HMGB1 blockade attenuated lung injury but only
in wild-type mice.27 However, HMGB1 blockade in an
ischemic AKI model reduced pulmonary neutrophil infiltra-
tion independent from TLR4. These data suggest that the
HMGB1–TLR4 pathway and other HMGB1-dependent
pathways exist in parallel and contribute to lung injury
induced by AKI.

Neutrophil extracellular traps (NETs) are also involved in
AKI-induced lung injury. Activated neutrophils, via innate
response to damage-associated molecular patterns produced
from the injured organs, release granule proteins and histone.
Extracellular histones derived from neutrophils activate
TLR2, 4, and 9 expressed in neutrophils, resulting in an
amplification of extracellular matrix formation in the distant
organ, called NET formation.37–39 After kidneys were sub-
jected to ischemia, NETs were detected in the lung and pro-
moted lung injury.40 A recent study reported that
recombinant thrombomodulin had high affinity for extra-
cellular histone and prevented histone agglutination in the
organs. Recombinant thrombomodulin administration either
before or 6 hours after kidney ischemia reperfusion injury
reduced histone accumulation in the lung and attenuated
AKI-induced lung injury in a mouse model, indicating that
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recombinant thrombomodulin is has potential as a drug for
treatment of respiratory failure with AKI.41 Interesting to
note is that the protective effect of recombinant thrombo-
modulin on the liver, but not on the lung, was observed in
mice with intestinal ischemia reperfusion.42

Ligand–receptor pairing analysis is a relatively new tech-
nique using bulk or single-cell RNA sequencing to reveal cell–
cell interactions.43,44 This technique was used successfully to
elucidate the fact that osteopontin released from injured
tubular cells binds to lung macrophages, followed by
neutrophil accumulation in the lung.45 Kidney-derived
osteopontin also triggered lung endothelial barrier dysfunc-
tion and vascular leak. Administration of osteopontin antibody
reduced the infiltration of macrophages and neutrophils, pro-
tected lung endothelial barrier, and attenuated subsequent lung
injury. Osteopontin is also a mediator for lung injury induced
by intestinal ischemia.46

Metabolites may be a therapeutic target for AKI-induced
lung injury and are a promising field of study. Metabolomic
analysis revealed increased oxidative stress, a shift to alter-
native pathways for energy production (glycolysis, tricarbox-
ylic acid cycle and pentose phosphate pathway) instead of
oxidative phosphorylation, and adenosine triphosphate
depletion in lungs after kidney ischemia.47,48 As described
below in the kidney–heart interaction section, metabolomic
analysis was also reported during AKI-induced heart injury.49

Because several organs, including kidney, heart, and liver, are
known to have dynamic metabolic changes in response to
insults,49,50 metabolomic analysis is expected to help clarify
the precise mechanisms of organ crosstalk in these organs.

Collectively, as shown in Figure 1, basic studies indicate
that AKI-induced lung injury is caused by inflammatory cy-
tokines, TLR4 signaling, infiltration of immune cells, and
NET formation, resulting in subsequent microvascular
permeability and endothelial barrier dysfunction in the lung.
This pathophysiology is partly supported by clinical studies
showing that AKI worsens the respiratory state and is asso-
ciated with higher mortality in acute respiratory distress
syndrome patients.

Kidney–heart interactions
The interactions between kidney and heart are well studied
and are frequently lumped together as cardiorenal syn-
dromes.51,52 Cardiorenal syndrome is classified into 5 groups
based on 2 factors—which organ has the primary dysfunc-
tion, and whether the primary organ dysfunction is acute or
chronic. Cardiorenal syndrome type 1, in which AKI occurs
with acute heart failure, has been reported in many studies,
and AKI is considered an unfavorable prognostic factor.53–56

However, cardiorenal syndrome type 3, in which acute car-
diac dysfunction follows AKI, is less well known. Recent
clinical studies demonstrated that AKI affects long-term
cardiovascular disease and death.57,58 A multicenter pro-
spective matched cohort study (the Assessment, Serial Eval-
uation, and Subsequent Sequelae of Acute Kidney Injury
[ASSESS-AKI] trial) demonstrated that AKI is associated
Kidney International (2023) 103, 1041–1055
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Figure 1 | Crosstalk among kidney, lung, and spleen. The
injured kidney or acute kidney dysfunction produces inflammatory
cytokines, including interleukin 6 (IL-6), damage-associated
molecular patterns, such as high mobility group box 1 (HMGB1) and
histone, and osteopontin. These mediators induce the production of
inflammatory cytokines, Toll-like receptor 4 (TLR4) signaling,
infiltration of neutrophils and T cells, neutrophil extracellular traps,
microvascular permeability, and endothelial barrier dysfunction in
the lung, resulting in acute respiratory distress syndrome (ARDS).
Altered energy production in the lung induced by acute kidney
injury (AKI) may be involved in ARDS. The indirect effect of AKI on
the lung is that IL-6 stimulates CD4-positive T cells in spleen to
produce interleukin-10 (IL-10), which attenuates AKI-induced lung
injury. In addition, macrophage (M4) expressing a7 nicotinic
acetylcholine receptors (a7nAChRs) stimulated by vagus nerve has a
protective role in AKI.

R Matsuura et al.: AKI and distant organ injury r ev i ew
with an increased incidence of heart failure and mortality.59

This finding has been associated with an increased
angiopoietin-2 level after AKI.60 Angiopoietin-2 leads to
vascular permeability and capillary loss, promoting interstitial
fibrosis in kidney and heart.61–63 Additional clinical studies
have shown the association of AKI with major adverse cardiac
events, including myocardial infarction, ischemic stroke, and
peripheral artery disease.64,65 However, this association was
not significant when adjustment was made for estimated
glomerular filtration rate and urine protein-to-creatinine ra-
tio at the 3-month visit in the ASSESS-AKI study. This result
suggests that failure of kidney recovery and persistent uremic
toxins may be important in long-term cardiovascular risk
after exposure to AKI.

When the kidney is injured, a systemic increase occurs in
uremic toxins, such as indoxyl sulfate and p-cresyl sulfate,
fibroblast growth factor 23 (FGF23), and many other mole-
cules. In vitro experiments showed that uremic toxins can
cause vascular inflammation and endothelial dysfunction,66,67

which can contribute to cardiac dysfunction. FGF23 is a
hormone that regulates phosphate dynamics and is elevated in
AKI, due to inflammatory cytokines, such as IL-6.68,69 FGF23
is secreted from bone in the steady state,70 and it is also
derived from liver via estrogen-related receptor-g (ERR- g)
during inflammation or AKI.71 An elevated FGF23 level
Kidney International (2023) 103, 1041–1055
induces left ventricular hypertrophy via the calcineurin-
nuclear factor of activated T-cells (NFAT) pathway,72 and it
may impair immune function related to infection, such as
pneumonia.73,74 In clinical studies, an elevated FGF23 level in
AKI is positively correlated with prolonged hospitalization,
severe sepsis, and increasing mortality risk.75–79 Thus, cardiac
dysfunction induced by AKI may be due partially to liver
FGF23 production stimulated by AKI.

Several lab studies have examined mechanisms underlying
cardiac changes after AKI. An increase in tumor necrosis
factor alpha (TNFa) and IL-1 expression and myeloperox-
idase activity in the heart was observed after experimental
kidney ischemia.80 Myocardial apoptosis was also observed
and attenuated by inhibition of TNFa. Another experimental
study with kidney bilateral ischemia reperfusion injury
showed mitochondrial fragmentation and release of cyto-
chrome C in cardiomyocytes and reduced cardiac function.
This study showed that mitochondrial fragmentation is due to
increased dynamin-related protein 1, a guanosine tri-
sphosphatase that promotes mitochondrial fission. Dynamin-
related protein 1 inhibitor,81,82 and mitochondrial division
inhibitor 1, reduced mitochondrial fragmentation and recov-
ered cardiac function.83

A recent metabolomics analysis revealed that a decrease in
amino acids, an increase in oxidative stress, and a shift to an
anaerobic energy pathway, including glycolysis and a pentose
phosphate pathway in the heart, occurred after kidney
ischemia reperfusion injury.49 These changes in metabolites
induced adenosine triphosphate depletion in the heart and
diastolic dysfunction. Supplementation or depletion of some
metabolites may be therapeutic options.

The sympathetic nervous system and the renin–angiotensin–
aldosterone system are involved in cardiac dysfunction after
AKI.51,52 The sympathetic nervous system and the renin–
angiotensin–aldosterone system are activated during AKI,84,85

and this activation can induce myocyte hypertrophy,
apoptosis and necrosis, and upregulation of genes promoting
fibrosis.86,87 These results support the view that the activation
of the sympathetic nervous system and the renin–angio-
tensin–aldosterone system contributes to cardiorenal syn-
drome, but direct evidence is still lacking. However, studies
have demonstrated that the sympathetic nervous system plays
a protective role against cardiorenal syndrome and AKI.88,89

A recent study showed that in mice with kidney ischemia
reperfusion or unilateral urinary obstruction, cardiac
dysfunction occurred with persistent cardiac inflammation
and macrophage infiltration until 28 days. This phenomenon
was dependent on galectin-3, as galectin-3 knockout or
galection-3 inhibition prevented cardiac dysfunction after
AKI.90

Taken together, clinical studies have indicated the car-
diorenal interaction that occurs in the acute and chronic
phase. Basic studies have revealed that AKI is associated with
subsequent inflammation, apoptosis, mitochondrial abnor-
mality, and an altered energy pathway in the heart, resulting
in cardiac dysfunction (Figure 2). Uremic toxins, including
1043
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Figure 2 | Crosstalk among kidney, heart, intestine, and liver. Acute kidney injury (AKI) induces an increase in tumor necrosis factor alpha
(TNFa) and interleukin 1 (IL-1) expression in the heart, myocardial apoptosis, and mitochondrial fragmentation, resulting in cardiac
dysfunction. A shift to an anaerobic energy pathway including glycolysis and the pentose phosphate pathway in the heart occurs in AKI and is
involved in diastolic dysfunction. Uremic toxins such as indoxyl sulfate and p-cresyl sulfate may cause vascular inflammation and endothelial
dysfunction. Fibroblast growth factor 23 (FGF23), secreted from liver in AKI, may cause ventricular hypertrophy. Inflammatory cytokines cause
the intestine barrier dysfunction and increased intestinal permeability, resulting in the changes in gut microbiome called dysbiosis. Dysbiosis is
associated with an increase of IL-17Aþ CD4þ T cells, which subsequently worsens the injury to kidney and liver. Dysbiosis may reduce the
production of short-chain fatty acids (SCFAs), products of gut microbiota. SCFAs play a protective role in attenuating kidney injury by
modulating the activity of histone acetyltransferase and deacetylase and inhibiting reduced nicotinamide adenine dinucleotide phosphate-
oxidase signaling in T cells. Dysbiosis also decreased activity of D–amino acid oxidase and altered D-serine and D-alanine metabolism, which is
associated with the degree of kidney injury. AKI directly cause liver injury via increased lipid peroxidation, reduced glutathione, and apoptosis
in the liver.
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FGF23, may cause vascular inflammation and endothelial
dysfunction.

Kidney–liver interactions
Clinical studies demonstrate that hepatic injury and
dysfunction are often seen in AKI patients,91,92 and vice versa.93

Patients with both liver injury and AKI have a higher risk of
mortality than those with either liver injury or AKI. However,
whether AKI directly affects liver function remains unclear
from clinical studies. Animal experiments indicate several
possible mechanisms by which AKI affects liver function. In-
flammatory cytokines have been reported to be involved in
liver injury induced by AKI.94 Knockout mouse studies have
shown that IL-6 and TNFa induced during AKI contribute to
liver injury.95 IL-17A is also involved in kidney–liver in-
teractions. IL-17A was found to be secreted from intestinal
Paneth cells in mice with kidney ischemia reperfusion injury or
nephrectomy, and IL-17A decreased in mice with genetically
induced Paneth-cell deficiency.96 IL-17A derived from intesti-
nal Paneth cells recruits neutrophils in liver and kidney and
causes both liver and kidney injury.97 However, this study97

unexpectedly found that intestinal Paneth cells could have a
protective role against kidney and liver injury. Intestinal TLR9-
deficient mice with renal ischemia had exaggerated kidney and
liver injury, via the increase of IL-17A and other proin-
flammatory cytokines in the kidney, liver, and intestine, which
demonstrates the complex role of the intestine in AKI.
1044
Oxidative stress also participates in AKI-induced liver
injury. Mice with kidney ischemia reperfusion or bilateral
nephrectomy had increased lipid peroxidation, reduced
glutathione, and apoptosis in the liver. Administration of
glutathione attenuated liver injury induced by AKI.98

Another study found that production of inflammatory cy-
tokines, neutrophil infiltration, and apoptosis in the liver
after kidney ischemia were suppressed by a genetic fusion
protein consisting of human serum albumin and thio-
redoxin, of which the plasma half-life was 10-fold longer
than that of thioredoxin, an antioxidative molecule.99 Thi-
oredoxin treatment also attenuates AKI and AKI-induced
lung injury in addition to liver injury, suggesting that thio-
redoxin plays a protective role in multiple systemic biolog-
ical actions, including reduction of circulating inflammatory
cytokines (IL-6 and TNFa).

In summary, although clinical studies show that AKI and
liver injury often occur simultaneously, and the causal effect
of AKI on liver is not established in patients, laboratory
studies demonstrated that AKI may cause liver injury directly,
by increasing lipid peroxidation, reducing glutathione level,
causing apoptosis in the liver, and indirectly, by the produc-
tion of IL-17A from intestinal Paneth cells (Figure 2).

Kidney–gut microbiome interactions
Several lab-based studies have explored the effect of AKI on
gut microbiota. Increased inflammatory cytokines in septic
Kidney International (2023) 103, 1041–1055
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AKI cause injury to cell junctions, disrupt the gut barrier
function, and increase intestinal permeability. This process
leads to bacterial translocation, the expansion of inflamma-
tion, and subsequent immune responses.100 In addition, crypt
proliferation is decreased, and crypt and villous apoptosis
occurs simultaneously via TLR4.101 These changes can induce
the changes in gut microbiome102,103 called dysbiosis. Dys-
biosis also can be observed in experimental ischemic and
nephrotoxic AKI, particularly in the phyla Actinobacteria,
Bacteroidetes, Firmicutes, Tenericutes, and Verrucomicro-
bia.104 Of note, clear distinctions could be seen in the gut
microbiota in ischemic AKI versus cisplatin-induced AKI at
the same time points and with similar increases in serum
creatinine. A recent study revealed that experimental kidney
injury induced by ischemia reperfusion affects the intestinal
microbiome by increasing Enterobacteriacea and decreasing
Lactobacilli and Ruminococacceae, and increasing intestinal
permeability and bacterial translocation.105 These changes are
associated with increase of IL-17Aþ CD4þ T cells, and
antibiotic-treated microbiome depletion reduces IL-17Aþ
CD4þ T cells with the expansion of regulatory T cells.
Another study reported that kidney ischemia induced endo-
toxemia derived from gut microbiota and that endotoxin
subsequently promoted inflammatory cytokines in the kid-
ney. Norfloxacin pretreatment attenuated endotoxemia and
improved kidney damage.106

Conversely, the role of the gut microbiome on AKI out-
comes was first demonstrated by experiments using germ-free
mice.107 Germ-free mice with kidney ischemia-reperfusion
injury had a higher number of natural killer T cells and
increased CD8 T-cell trafficking and inflammatory cytokines,
with worse kidney damage after ischemia reperfusion injury,
compared to control mice. Reconstitution of germ-free mice
using wild-type gut microbiota attenuated kidney injury after
ischemia-reperfusion. The importance of gut microbiota on
the course of AKI was also confirmed with experiments
using antibiotic-induced microbiome depletion.108 However,
another study demonstrated that antibiotic-induced micro-
biome depletion improved kidney injury due to reduced levels
of macrophages and inflammatory cytokines, including
TNFa, IL-6, and monocyte chemoattractant protein-1.109 The
differences between these studies are not clear, although one
possibility is that specific antibiotics can selectively deplete
injurious bacteria while not depleting protective bacteria. In
addition, the immune response in germ-free mice may not be
the same as that in wild-type mice, because of the absence of
germs since birth.110

The effect of gut microbiota on AKI is attributed partly to
short-chain fatty acids (SCFAs), such as acetate, propionate,
and butyrate. SCFAs are products of gut microbiota. SCFAs
activate various G protein–coupled receptors including
GPR43 and olfactory receptor-78,111 which modulate the
activity of histone acetyltransferase and deacetylase.112

Treatment with acetate-producing bacteria protects against
kidney ischemia.112 SCFAs also modulate immune-cell func-
tion. In septic AKI, acetate inhibited reduced nicotinamide
Kidney International (2023) 103, 1041–1055
adenine dinucleotide phosphate (NADPH)-oxidase signaling
in T cells and attenuated kidney injury.113 In vitro experiments
elucidated that SCFAs decreased dendritic cell maturation and
inhibited CD4 and CD8 T cell proliferation.112 D–amino acid
oxidase is another factor in gut microbiota–kidney interaction.
AKI induced gut dysbiosis with decreased activity of D–amino
acid oxidase and altered D-serine and D-alanine meta-
bolism.114 Administration of D-serine or D-alanine to mice
subjected to kidney ischemia reperfusion improved tubular
injury.114,115

In summary, AKI causes intestine barrier dysfunction, an
increase in intestinal permeability, and dysbiosis, resulting in
activation of IL-17Aþ CD4þ T cells, changes in SCFA levels,
and activity of D–amino acid oxidase. These mechanisms
modify injury responses in kidney and liver (Figure 2).
However, information to date is limited on the interaction
between the kidney and the gut in AKI patients.

Kidney–brain interactions
The brain is an important target organ during AKI. A
propensity-matched cohort study revealed that AKI was
significantly associated with incident stroke long-term after
kidney recovery.116 The Atherosclerosis Risk in Communities
(ARIC) study, which is a large prospective cohort study,
showed the high incidence of dementia that occurred over the
course of 10 years in AKI patients, and the significant asso-
ciation of AKI with incident dementia, after adjusting with
various factors, including apolipoprotein E (APOE) geno-
types.117 A retrospective study demonstrated that AKI was
independently associated with sepsis-associated encephalop-
athy.118 A well-established finding is that AKI induces elec-
trolyte and metabolic disorders in critical illness, which can
cause encephalopathy.119,120

AKI leads to many changes in the brain. After severe
ischemic AKI, mouse brains are characterized by increased
neuronal pyknosis, increased microglial cells (brain macro-
phages), leakage in the blood–brain barrier, and inflamma-
tion in cortex and hippocampus.121 In the same study, AKI
also led to severe declines in locomotor activity. In another
study, i.p. injection of indoxyl sulfate to unilateral nephrec-
tomized mice caused behavioral disturbances with decreased
neuronal survival, and neural stem-cell activity.122 An in vitro
study also demonstrated that indoxyl sulfate caused mito-
chondrial dysfunction and oxidative stress in astrocytes.123 A
recent study revealed that aryl hydrocarbon receptor in
endothelial cells is involved in cognitive impairment by
indoxyl sulfate,124 and another study confirmed that p-cresyl
sulfate had the same effect.125

However, unlike in CKD, the level of uremic solutes was
measured as being low in AKI.126 Thus, the encephalopathy by
AKI could be from different factors, including proinflammatory
cytokines, such as keratinocyte-derived chemoattractant and
granulocyte colony stimulating factor (G-CSF).121,127 AKI can
lead to increased oxidative stress in the hippocampus and frontal
area.128 Kidney ischemia reperfusion injury also induces
apoptosis and neutrophil infiltration in the brain. The brain
1045
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injury by AKI was attenuated by NETs and necrosis inhibitors,
indicating that brain injury might involve NET formation,
although NETs were not detected in the brain.40 The blood–
brain barrier can be also affected by AKI. Uremic solutes were
found to modulate the expression of drug transporters, cellular
receptors, and cellular tight junction in in vitro and in vivo ex-
periments.129 Kidney ischemia reperfusion decreased peroxi-
some proliferator-activated receptor-gamma coactivator (PGC)-
1a levels in both the kidney and blood–brain barrier. PGC-1a
transfection to ischemic AKI mice decreased brain vascular
permeability via the restoration of mitochondrial function and
tight junctions.130

In summary, clinical studies indicate that AKI is involved
in brain functional changes both acutely and chronically.
However, the pathophysiology is incompletely elucidated,
although experimental studies suggest that the mechanisms
include uremic toxins, mitochondrial abnormalities, and NET
formation in the brain.

Kidney–spleen crosstalk
The spleen is a large pool of immune cells, and splenocytes
play an important role in experimental AKI models
(Figure 1). In ischemic AKI, splenic macrophages with a7
nicotinic acetylcholine receptors were protective against kid-
ney injury, whereas genetic or pharmacologic depletion of a7
nicotinic acetylcholine receptors, or splenectomy, removed
the protective effects.131,132 Activation of macrophage with a7
nicotinic acetylcholine receptors is dependent on a choline
acetyltransferase-positive CD4þ memory T cell with b2
adrenergic receptor, which is stimulated by norepinephrine
released from splenic nerve.133 Stimulated macrophage
expressing a7 nicotinic acetylcholine receptors reduced pro-
duction of inflammatory cytokines and suppressed inflam-
mation.134,135 This anti-inflammatory pathway is elicited by
electrical stimulation of the efferent vagus nerve132 and is
known as the cholinergic anti-inflammatory pathway (CAP).
CAP also can be activated with the stimulation of C1 neu-
rons,136 located in the rostral ventrolateral medulla (RVLM),
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innervating sympathetic preganglionic neurons in the inter-
mediolateral cell column of the spinal cord as well as neurons
in the dorsal motor nucleus of the vagus (where most of the
neurons of the efferent vagus nerve originate) and in the
paraventricular nucleus of the hypothalamus (the primary
driver of the hypothalamic–pituitary–adrenal axis).137 A
recent experiment using selective optogenetic stimulation (a
method to target photosensitive proteins like channel
rhodopsin by light) revealed that the protective effect of
afferent vagus nerve stimulation for ischemic AKI was
dependent on the C1 neurons–sympathetic nerve–splenic
nerve axis.138

In an AKI-to-CKD transition model, splenic lymphocytes
could contribute to the development of albuminuria after
AKI.139 The spleen is also involved in ischemic pre-
conditioning during AKI.140 Splenocytes also play a role in
sepsis and septic AKI. Cecal ligation and puncture, one of the
sepsis models, induced splenocyte apoptosis via TLR9.141–143

Apoptotic splenocytes produced IL-12, IL-17A, and high
mobility group box 1, which are proinflammatory cytokines
causing tubular damage in sepsis.142,144,145

Splenocytes affect not only kidney but also other distant
organs in AKI. Lung injury induced by AKI is partly attrib-
utable to IL-6, and is limited by IL-10, the production of
which is stimulated by IL-6.34 A recent study33 found that IL-
10 was produced from macrophage, B cells, and T cells. In
experiments with CD4 knockout mice, the level of IL-10 was
significantly reduced in the spleen, which induced the in-
crease of serum and lung chemokine ligand 1 and lung injury.
These studies emphasize the importance of splenocytes in the
pathophysiology of lung injury induced by AKI.

The spleen is involved in iron homeostasis. Iron is stored
in hepatocytes as well as hepatic and splenic macrophages.
Hepcidin is released from the liver and regulates systemic iron
levels by degrading the iron exporter ferroportin, subse-
quently reducing the influx of iron into plasma from the
stored cells.146 In a kidney ischemia reperfusion model,
circulating iron levels increase and the splenic iron level
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Table 1 | Representative clinical evidence on AKI-related organ injury

Organ Study (reference) Subjects Results

Lung Multicenter, observational study
in France19

8029 ICU patients without CKD ARDS was independently associated with AKI (odds ratio, 11.01; 95%
CI, 6.83–17.73).
AKI was associated with higher mortality in patients with ARDS
(42.3% vs. 20.2% in patients without AKI).

Multicenter, observational study
in 60 countries20

1974 ARDS patients with
baseline eGFR $60 ml/min per
1.73 m2

The proportion of patients with severe ARDS increased with the
severity of AKI.
FIO2, PEEP, and peak pressure in mechanical ventilator were higher
in patients with AKI.
Mechanical ventilation-free days were lower in patients with AKI.
AKI was associated with higher mortality in ARDS patients.

Heart A multicenter, prospective
cohort study in multiple
countries53

927 patients with acute heart
failure requiring i.v. diuretics

72 patients (7.8%) had worsening kidney function, defined as a
sustained increase in plasma creatinine level of 0.5 mg/dl or $50%
above first value or initiation of acute RRT.

Meta-analysis56 A total of 49,890 heart failure
patients were included in 28
studies

23% of the patients had worsening kidney function.
In multivariate analysis, worsening kidney dysfunction was an
independent predictor of mortality (HR, 1.95; 95% CI, 1.45–2.62).

A retrospective study with a
large healthcare registry57

146,941 hospitalized adults 31,245 patients (9%) had AKI.
AKI was associated with hospitalization for heart failure (adjusted HR,
1.44; 95% CI, 1.33–1.56).

A retrospective study with
Swedish registry
(SWEDEHEART)58

24,018 patients who underwent
coronary artery bypass grafting

The incidence of AKI was 12%. Mean follow-up was 4.1 years.
AKI was associated with hospitalization for heart failure (stage 1, HR
1.60 [95% CI, 1.34–1.92]; stage 2, HR, 1.87 [95% CI, 1.54–2.27]; stage 3,
HR, 1.98 [95% CI, 1.53–2.57]).

A multicenter, prospective
cohort study59

1538 hospitalized patients 769 patients had AKI, with 39.8% having preexisting CKD.
Mean follow-up was 4.5 years.
AKI was associated with the incidence of heart failure (HR, 1.68; 95%
CI, 1.22–2.31).

A retrospective study with a
health insurance registry64

4869 AKI survivors requiring
dialysis and 4869 non-AKI
matches

The unadjusted rate of coronary events during follow-up was
higher in the AKI group than in the non-AKI group (19.8 and 10.3
per 1000 person-years). AKI was associated with a higher long-term
risk for coronary events (HR, 1.67; 95% CI, 1.36–2.04).

A retrospective study in a single
center65

1030 patients with postcardiac
surgery

287 patients (27.9%) had AKI.
Five-year cumulative risk of myocardial infarction was 5.0% (95%
CI: 2.9%–8.1%) among patients with AKI and 3.3% (95% CI: 2.1%–

4.8%) among patients without AKI, which is not statistically
significant (adjusted HR, 1.5; 95% CI: 0.7–3.2).

Liver A multicenter, retrospective
study91

605 AKI patients Liver failure was associated with mortality (HR, 3.09; 95% CI, 1.90–
4.93).

A prospective study in a single
center92

162 AKI patients requiring RRT 30 patients (37%) had liver dysfunction. Higher level of plasma
endogenous erythropoietin was associated with liver dysfunction.

Intestine No data

Brain A retrospective study with
French multicenter database118

2513 septic patients 1341 (53%) had sepsis-associated encephalopathy (Glasgow coma
scale <15 or delirium).
Acute renal failure was independently associated with
encephalopathy. (adjusted odds ratio, 1.41; 95% CI,
1.19–1.67).

A retrospective propensity
score–matched study with a
healthcare registry116

1041 AKI patients and 1041 non-
AKI matches

AKI was associated with increased risk of developing dementia (HR,
3.40; 95% CI, 2.14–5.40).

Propensity score–matched
study from ARIC study117

854 AKI patients and 854 non-
AKI matches

The cumulative incidence of dementia was 31.6% at 10 years.
AKI had a higher risk of dementia (cause-specific HR, 1.25; 95% CI,
1.02–1.52).

(Continued on following page)
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Figure 4 | The impact of acute kidney injury (AKI) on distant
organs. AKI-induced injury to distant organs is mediated primarily
by inflammatory cytokines, including interleukin 1 (IL-1), IL-6,
monocyte chemoattractant protein-1, and tumor necrosis factor
alpha, damage-associated molecular pattern molecules (DAMPs),
and pattern-associated molecular patterns (PAMPs) released from
the injured kidney. Immune cell infiltration to distant organs is also
involved. In this model of direct damage by AKI (red arrow), the
response originates directly from the injured kidney. Recent studies
reveal that some distant organ injury can be affected by other
distant organ injury induced by AKI. For example, the role of
intestine-derived IL-17A production or immune cells modulated by
AKI on liver injury has been elucidated.96,97 The lung injury induced
by AKI is regulated by splenocyte-derived IL-10, which is
upregulated by AKI via the increase of circulating IL-6.33 This type of
distant organ damage is indirectly affected by AKI through other
distant organ injury and can be called indirect damage by AKI (blue
arrow). Moreover, clinical studies indicate that multiple organs
mutually compensate the stress to each organ to survive and
maintain the homeostasis,158,159 although the precise mechanisms
remain unknown (dotted arrow). CNS, central nervous system.

Table 1 | (Continued) Representative clinical evidence on AKI-related organ injury

Organ Study (reference) Subjects Results

Spleen No data

Muscle A secondary analysis of
multicenter, prospective
observational study156

462 AKI patients
$65 years old

141 (30.5%) patients had frailty at ICU admission.
Frailty was associated with 90-day mortality (adjusted HR, 1.49; 95%
CI, 1.11–2.01).

A post hoc analysis of a
multicenter prospective
observational study152

415 survivors who received
dialysis for AKI

Health utility index at 60 days, a scale of general health state and
quality of life, was low (0.40 � 0.37).

AKI, acute kidney injury; ARDS, acute respiratory distress syndrome; ARIC, Atherosclerosis Risk in Communities; CI, confidence interval; CKD, chronic kidney disease; eGFR, estimated
glomerular filtration rate; FiO2, fraction of inspiratory oxygen; HR, hazard ratio; ICU, intensive care unit; PEEP, positive end-expiratory pressure; RRT, renal replacement therapy;
SWEDEHEART, the Swedish Web-system for Enhancement and Development of Evidence-based care in Heart disease Evaluated According to Recommended Therapies.
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decreases with upregulation of ferroportin in splenic macro-
phage, indicating that kidney injury induces the iron release
from spleen.147,148 Excessive iron causes production of reac-
tive oxidative stress, lipid peroxidation, and subsequent fer-
roptosis, one of the emerging new mechanisms in AKI.149,150

Hepcidin administration degraded the expression of ferro-
portin in splenic macrophage and attenuated acute kidney
injury.147

In summary, recent basic studies indicate that spleen has
multiple roles in AKI and distant organ injury, including both
the protective effect of specific types of macrophages or T cells
and the harmful effect of production of inflammatory cyto-
kines and iron metabolism. Clinical data on spleen in AKI are
limited. Further studies are necessary to elucidate the path-
ophysiology of immune responses and iron metabolism in
spleen related to AKI.

Kidney–muscle crosstalk
Recent clinical and experimental studies suggest that kidney
and skeletal muscle interact. Skeletal muscle weakness and
wasting occurs in critically ill patients with AKI, resulting in
lower quality of life and lower levels of activity.151,152

Although muscle wasting in AKI is less studied than that in
CKD, suggested mechanisms include rapid activation of
protein degradation and decrease of muscle synthesis. In
experiments with bilateral ureteral obstruction or unilateral
ischemia with contralateral nephrectomy, the level of phos-
phorylated Akt in muscle decreased, and expression of me-
diators of muscle wasting increased, indicating that muscle
synthesis is inhibited during AKI. Muscle levels of IL-6, light
chain 3B-II (LC3B-II), and the ubiquitin protease system are
also increased in AKI, suggesting that AKI induces inflam-
mation, autophagy, and protein degradation in muscle.153,154

Muscle also may affect the progression of AKI to CKD. In
experiments using mice with overexpression of PGC1a in
skeletal muscle, kidney fibrosis was suppressed 7 days after
folic acid nephropathy. PGC1a induced elevated circulating
irisin, a myokine, inhibiting transforming growth factor beta
signaling in tubular cells, and preventing fibrosis after kid-
ney insult.155 In clinical studies, preexisting frailty, a state of
reduced physical reserve, is a factor for poor prognostic for
short- and long-term mortality in AKI patients.156 A point
to note is that kidney function evaluation by serum
1048 Kidney International (2023) 103, 1041–1055



Table 2 | Suggested mediators and potential therapeutic targets

Organ Mediators or mechanisms (reference) Potential therapeutic

Lung Macrophage22 An inhibitor of macrophage activation, CNI-1493, attenuates pulmonary vascular permeability
and congestion induced by AKI.

Infiltration of neutrophil24 Neutrophil infiltration in the kidney and lung after kidney ischemia reperfusion is observed.
Adenosine A2A agonist, which reduces inflammatory cell recruitment, attenuates lung
vascular permeability and neutrophil infiltration.

Neutrophil elastase25 The increase of neutrophil elastase activity in the lung after bilateral nephrectomy induces
cytokine production and lung injury. Neutrophil elastase inhibitor suppresses the expression
of inflammatory cytokine and lung injury.

IL-631 In IL-6 knockout mice subjected to kidney ischemia perfusion, lung inflammation and capillary
leak are reduced compared to wild-type mice. Anti-IL-6 antibody also attenuates lung injury
induced by AKI.

CXCL132 AKI induces CXCL1 production in lung endothelial cells stimulated by circulating IL-6. Anti-
CXCL1 antibody administration or CXCR2 (a receptor for CXCL1) knockout improves lung
injury while kidney function is not affected.

TLR4–HMGB1 pathway27 The experiment using TLR4-mutant mice reveals that TLR4 is involved in lung injury including
neutrophil infiltration, increased neutrophil elastase activity, and vascular permeability caused
by bilateral nephrectomy. Blockade of HMGB1 (one TLR4 agonist) by neutralizing antibody
reduced neutrophil infiltration in TLR4-wild-type.

NETs formation40 Histone secretion from injured tubules induces the formation of neutrophil extracellular traps
in the in vitro experiment. Kidney ischemia reperfusion increases the levels of circulating
histones, and NET formation is detected in the lung after the renal injury. NETs inhibition or
anti-Histone antibody administration reduced the injury to the lung.

NETs formation41 The lung injury by kidney ischemia reperfusion is caused by histone and NETs formation.
Recombinant thrombomodulin, which binds to circulating histone, attenuates the lung injury.

Osteopontin45 Ligand-receptor pairing analysis using kidney and lung single-cell RNA sequencing identifies
osteopontin released from kidney as a cause of lung injury following kidney ischemia
reperfusion. Osteopontin-knockout or anti-osteopontin antibody attenuates lung injury
caused by AKI.

Altered energy production47 Kidney ischemia reperfusion alters the lung metabolic pathway to the fatty acid oxidation
pathway. This change is correlated with the extracellular accumulation of the mitochondrial
damage–associated molecular patterns (mtDAMPs).

Altered energy production48 Metabolomics analysis elucidates increased oxidative stress, a shift to anaerobic energy
production and depleted level of adenosine triphosphate.

Heart TNFa, IL-180 Kidney ischemia reperfusion affects the increase expression of IL-1 and TNFa, increased
apoptosis in the heart and systolic dysfunction. Blockade of TNFa decreases the apoptotic
area in the heart.

Mitochondrial fragmentation by DRP183 Cardiac dysfunction and mitochondrial fragmentation in the heart are observed after AKI.
Mitochondrial fragmentation is regulated by DRP1, and mdivi1, a DRP1 inhibitor, decreased
mitochondrial fragmentation in the heart, and improved cardiac function.

Altered energy production49 Metabolomics analysis revealed amino acid depletion, increased oxidative stress, and a shift to
anaerobic energy production in the heart 24 hours after kidney ischemia reperfusion. These
changes lead to decreased adenosine triphosphate level in the heart and diastolic
dysfunction.

Galectin 390 Kidney ischemia reperfusion induces cardiac systolic dysfunction, whereas galectin 3 knockout
attenuates cardiac dysfunction by renal injury. Further experiments using chimeric mice reveal
that galectin 3 from bone marrow–derived cells is responsible for cardiac dysfunction.
Modified citrus pectin, a galectin 3 inhibitor, attenuates cardiac dysfunction by renal injury.

Liver IL-6, MCP-1, TNFa94 Kidney ischemia reperfusion induces the increase of inflammatory cytokines (IL-6, MCP-1,
TNFa) in the liver. The increase of NF-kB/DNA binding activity is also confirmed by EMSA.

(Continued on following page)
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Table 2 | (Continued) Suggested mediators and potential therapeutic targets

Organ Mediators or mechanisms (reference) Potential therapeutic

IL-6, IL-17A, TNFa95 Kidney ischemia reperfusion or bilateral nephrectomy induces the increase of liver enzymes,
hepatic vascular permeability, and neutrophil infiltration in the liver. Neutralizing antibodies
against TNF-a, IL-17A, or IL-6 or gene depletion of TNF-a, IL-17A, IL-17A receptor, or IL-6 are
protected against hepatic injury.

IL-17A96 Small intestinal Paneth cells increases the synthesis and release of IL-17A after kidney
ischemia reperfusion or bilateral nephrectomy. Intestinal macrophages transport IL-17A
released from Paneth cell granule and induce hepatic injury. Genetic or pharmacologic
depletion of Paneth cells decreases small intestinal IL-17A secretion and attenuates hepatic
and kidney injury after AKI.

Interleukin 17A97 Intestinal TLR9 deletion induces higher expression of IL-17A in the intestine and worsens the
injury to kidney and liver after kidney ischemia reperfusion. Administration of anti-IL-17A
antibody attenuates the injury to kidney and liver after ischemia reperfusion.

Oxidative stress98 Kidney ischemia and bilateral nephrectomy induce the increase of malondialdehyde, an index
of lipid peroxidation, while total glutathione is decreased in the liver. Hepatic apoptosis also
increases. Infusion of reduced glutathione improves liver architecture and is associated with a
reduction in hepatic malondialdehyde and serum alanine transaminase levels.

Oxidative stress99 A long-acting thioredoxin, a fusion protein of albumin and thioredoxin (anti-oxidative
protein), attenuates lung and liver injury caused by kidney ischemia.

Intestine Gut microbiota105 Kidney injury by ischemia induces dysbiosis with increase of Enterobacteriacea and decrease
of Lactobacilli and Ruminococacceae and decreases the level of short chain fatty acids in stool.
Deletion of microbiota protects against renal ischemia reperfusion, with the expansion of
regulatory T cells and M2 macrophages in kidney, spleen, and intestine.

Gut microbiota108 Deletion of gut microbiota by broad-spectrum antibiotics attenuates kidney injury after
ischemia reperfusion, which is attributed to immature F4/80þ kidney resident macrophages
and bone marrow monocytes with low expression of CX3CR1 and CCR2.

Short-chain fatty acids112 Administration of acetate-producing bacteria (B. longum or B. adolescentis) attenuated kidney
injury caused by ischemia reperfusion. Short-chain fatty acids inhibit histone deacetylase
activity. SCFAs decrease the maturation of dendritic cells and inhibit the capacity of these cells
to induce CD4(þ) and CD8(þ) T cell proliferation.

D-serine114 Gut microbiota protect against kidney ischemia in the experiment using germ-free mice. AKI-
induced gut dysbiosis alters the balance of D/L-amino acids in the intestine, and D-serine was
increased in the injured kidney. D-serine supplementation reduced tubular injury after
ischemia reperfusion.

D-alanine115 This study is relevant to reference 111. D-alanine is increased in feces and plasma after kidney
ischemia reperfusion. D-alanine supplementation protected against kidney ischemia with the
recovery of mitochondria function, probably via N-methyl-D-aspartate (NMDA) receptor
signaling.

Brain Indoxyl sulfate123 In in vitro experiments with human astrocyte–treated IS, IS stimulates the release of reactive
oxygen species, increases nuclear factor (erythroid-derived 2)–like 2 levels, and reduces
mitochondrial membrane potential. IS also triggers astrocyte apoptosis.

Uremic toxin124 Using SPECT-CT, uremic toxin disrupts the blood–brain barrier. In mice with knockout of aryl
hydrocarbon receptor (AhR), the receptor of indoxyl sulfate, the blood–brain barrier is
protected against IS-induced disruption.

p-cresol sulfate125 The unilateral nephrectomized mice with p-cresol sulfate administration developed
depression-like, anxiety-like, and cognitive impairment behaviors with accumulation of p-
cresol sulfate in brain. Increased apoptosis, oxidative stress, and neuroinflammation occur in
the prefrontal area. AST-120, a regent chelating uremic toxin, attenuates neurologic disorders.

Uremic toxin129 The in vitro and in vivo experiments show that uremic toxins such as indole-3-acetic acid and
IS change the expression of drug transporters (Abcb1b, Abcc1, Abcg2).

Keratinocyte-derived chemoattractant
and G-CSF121

Kidney ischemia increases neuronal pyknosis and microgliosis in the brain and induces
increased levels of the proinflammatory chemokines such as keratinocyte-derived
chemoattractant and G-CSF in the cerebral cortex and hippocampus.

r ev i ew R Matsuura et al.: AKI and distant organ injury
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Table 2 | (Continued)

Organ Mediators or mechanisms (reference) Potential therapeutic

NET formation40 Histone secretion from injured tubules induces the formation of neutrophil extracellular traps
in the in vitro experiment. Kidney ischemia reperfusion increases the levels of circulating
histones, and neutrophil infiltration and TUNEL-positive cells are detected in the brain after
the renal insult. NETs inhibition or the administration of anti-Histone antibody reduced the
injury to the brain.

Oxidative stress128 Lipid and protein oxidation was higher in the hippocampus in kidney ischemia reperfusion.
Lipid oxidation in the frontal cortex is also higher.

PGC1a130 Kidney ischemia reperfusion induces the decrease in the expression of PGC1a in the brain.
PGC1a overexpression decreases the blood–brain barrier and increases the protein expression
of tight junction.

Spleen Vagus nerve stimulation and a7nAChR-
positive splenocytes132

Stimulation of vagus nerve alleviates kidney injury after ischemia reperfusion. This protective
effect of vagus nerve stimulation is involved in a7nAChRs-positive splenocytes.

C1 neuron and a7nAChR-positive
splenocytes136

C1 neuron consists of glutamatergic and catecholaminergic neurons and mediates adaptive
autonomic responses to physical stressors. Optogenetic C1 neuron stimulation protected from
kidney ischemia-reperfusion injury. This protection is involved in subdiaphragmatic vagal
nerve and a7nAChR-positive splenocytes.

TLR9141,142 The experiment using TLR9 inhibitor or genetic deletion of TLR9 reveals that TLR9 is involved
in kidney dysfunction in the sepsis model. TLR9 is activated by mitochondrial DNA. Splenic
apoptosis is potentially involved in this mechanism.

Muscle Downregulated Akt
phosphorylation153,154

Kidney ischemia or nephrectomy induces the decrease of Akt phosphorylation and protein
synthesis in muscle. Muscle level of IL-6, LC3B-II, and ubiquitin protease system elevated.
Inflammation and the increase of autophagy and protein degradation may be involved in AKI-
induced muscle atrophy.

PGC1a, irisin155 Overexpression of muscle PGC1a attenuated folic acid nephropathy. A myokine, irisin,
alleviated TGF-b signaling in tubule cells.

BM, bone marrow; CX3CR1, C-X3-C motif chemokine receptor 1; CCR2, C-C motif chemokine receptor 2; CXCL1, chemokine ligand 1; DRP1, dynamin-related protein 1; EMSA,
electrophoresis mobility shift assay; G-CSF, granulocyte colony stimulating factor; HMGB1, high mobility group box 1; IL, interleukin; IS, indoxyl sulfate; LC3B-II, light chain 3B-II;
MCP1, monocyte chemoattractant protein 1; NET, neutrophil extracellular trap; NF-kB/DNA, nuclear factor kappa beta/DNA; PGC1, peroxisome proliferator-activated receptor-
gamma coactivator; SCFA, short-chain fatty acid; SPECT-CT, single-photon emission computed tomography; TGF, transforming growth factor; TLR4, Toll-like receptor 4; TNF,
tumor necrosis factor; TUNEL, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling; a7nAChR, a7 nicotinic acetylcholine receptor.
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creatinine levels will be less reflective of glomerular filtration
rate, given muscle reduction in AKI. Significant falls in
serum creatinine level that persisted to hospital discharge
were reported particularly in survivors of AKI.157 Taken
together, basic and clinical data suggest that AKI and skeletal
muscle changes are linked.

Multiple-organ crosstalk in AKI
AKI patients often have multiple organ dysfunction, rather
than single-organ injury. This finding suggests a model in
which AKI induces systemic responses in inflammatory and
immune systems and subsequently causes other organ in-
juries. Recent studies have demonstrated this concept of
crosstalk among multiple organs, using a new approach called
organ network analysis. The network analysis aims to evaluate
the connectivity among multiple nodes (organs). When
connectivity among some nodes is strong, these nodes are
treated as a cluster. A larger number of clusters indicates that
the network is disrupted and fragmented, and smaller
numbers indicate that the nodes are tightly connected
(Figure 3). This network analysis was applied to adult critically
ill patient data and revealed that 2 organ-system networks exist
Kidney International (2023) 103, 1041–1055
in critically ill patients—the respiratory–renal–inflammatory
and the cardiovascular–hepatic–coagulation. These 2 organ
networks were found to be balanced and connected to each
organ in survivors, whereas in nonsurvivors, these networks
are disrupted.158,159 These finding support the view that death
will occur when organs lose their ability to respond concordantly
to stress and fail to maintain systemic stability. However, data
are limited regarding the precise mechanisms by which single-
organ injury such as AKI leads to multiple-organ injury and
death.

Summary and perspectives
AKI is a major morbidity and mortality multiplier in criti-
cally ill patients, and an unacceptably high mortality rate of
severe AKI has been reported, even with the availability of
dialysis. This finding indicates that AKI may not be just a
single-organ injury but may amplify multiple-organ injuries.
Representative clinical evidence on AKI-related organ injury
is shown in Table 1. Increasing experimental data are
revealing the pathophysiology of the interactions between
kidney and other involved organs (Figure 4) and identifying
possible mediators and potential therapeutic targets
1051
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(Table 2). A point to note is that many different mechanisms
are contributing to many different organ injuries both
simultaneously and one after another. Comprehensive and
integrated analysis for the disease trajectory of multiple-
organ failure will be the next step for future research.
Network analysis recently identified that organ-network
disruption might be associated with death in critically ill
patients; however, data supporting this concept reported to
date are limited. Future studies are needed to elucidate the
mechanism of not only 2-organ crosstalk but also crosstalk
with the organ network. Recent studies on the single-cell
transcriptome of human peripheral blood cells in septic
patients revealed that specific types of monocytes or neu-
trophils are associated with illness severity and may be
involved in the pathophysiology of multiple-organ injury.160,161

Further studies targeting inflammatory reactions by immune
cells are necessary to elucidate organ-network mechanisms.
Such studies will help in development of therapeutic strategies
against AKI and distant organ injury.
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